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Abstract— An ambitious goal in modern robotic science is to
build mobile robots that are able to interact as companions in real
world environments. Especially for caretaking of elderly people a
system robustly working at private homes is essential, requiring
a very natural and human oriented way of communication.
Since home environments are usually very individual a first
task for a newly acquired robot is to get familiar with its new
environment. This paper gives a short overview on how we
integrated a vision based localization using the advantages of a
very modular architecture and extending a spoken dialog system
for online labeling and interaction about different locations. We
present results from the integrated system working in a real, fully
furnished home environment where it was able to learn the names
of different rooms. This system enables us to perform real user
studies in future without the need to fall back to Wizard-of-Oz
experiments. Ongoing work aims at enabling the robot to take
initiative by asking for unknown locations. A future extension is
the ability to generalize over features of known rooms to make
predictions when encountering unknown rooms.

I. INTRODUCTION

Based on the observation that robots ‘living’ in home
environments need to be ‘socially aware’, there has been a
trend in robotics research to develop features facilitating social
behavior of robot companions. However, the next step that
needs to be taken now is to actually move robots out of the
lab into real home environments.

It has been shown [1] that for an improved acceptance
of assistive robotic products, the functionality needs to move
beyond task-based interactions, and systems need to be attrac-
tive, affordable, and (especially in care applications) be non-
stigmatizing. From the user interaction perspective, perceived
social intelligence is more important than artificial intelligence.

In the context of the European project ‘The Cognitive
Robot Companion’ (COGNIRON, see [2]) we work on a
robot ’companion’ that is able to learn new skills and grow
its capacities in constant interaction with humans. Learning
conceptual representations of space and objects is an important
basis in order to enable a grounded interaction between the
user and the robot. In this paper we describe our results in

building and testing a system that can learn representations of
space through verbal interaction with humans.

An important aspect for such a system is its architecture.
One of the goals of an architecture is to have a description
of the system from a functional view: how should the dialog
system be integrated to support learning. The other goal of an
architecture is a system description in modules which can be
implemented separately. Since COGNIRON is an ’Integrated
Project’, the development of software modules for different
tasks is carried out by multiple developers. Therefore, software
tools and standardization have to be used to support the
developers. With the right approach, integrating the different
software components is a matter of ”configuration” rather than
programming.

Furthermore, the goal of our research activities is not only
developing new algorithms and pieces of software capable of
performing a certain task, but also applying them to the real
world or scenarios as close as possible to reality. In order
to test our system we define a scenario, the so-called Robot
Home Tour. In this scenario a person without any knowledge
of robotics has just bought a robot companion and gives it a
tour through its private home so to familiarize it with its new
habitat. The human points to and names locations and objects
which she believes are necessary for the robot to remember.
The robot should have strong human robot interaction capabil-
ities in order to understand and interact with the human guide
as well as robust mapping and localization methods to build
a representation of the totally new environment. For such a
system it is important to be evaluated not only in a lab but in
a real home environment in order to perform real-world user
studies with an autonomously working system.

In this paper we briefly describe related work (section II),
the methods for map-building and dialog, and their integration
into the system architecture (section III). Finally we present
results from tests in a real home environment performed within
the home tour scenario (section IV).



II. RELATED WORK

For a long time roboticists and researchers in Artificial
Intelligence have been developing mobile robots that can
interact with humans. At first the robots were specifically
designed to operate in office environments and interact with
humans with a background in robotics. The Jijo-2 robot [3] for
example was developed to carry out fetch and carry tasks and
guide people to locations in an office environment. The robot
was equipped with a dialog system designed to communicate
in the Japanese language. The navigation system relied heavily
on the speech input from the human and did not use any
other sensors except odometry. Also a localization system was
implemented using an omnidirectional camera, but the degree
of integration with the other systems is unclear.

In recent years robots are put in less controlled environments
with a lot of people who are unfamiliar with robots. For
example, the robot Robox [4] was developed to give tours
to visitors at crowded places and was tested in an exhibition
involving Robotics. Another project was the museum tour-
guide robot Rhino [5], which was deployed in the museum
of Bonn. Both robots could use speech to communicate with
the visitors, although the dialog was limited with little to no
interaction. Also both robots were provided with an accurate
metric map, so mapping the environment was not considered
an issue.

In [6] a study is described that aimed at developing a
domestic robot which is able to naturally communicate with
humans in their homes. The resulting robot Lino did have a
dialog system as well as a navigation and localization system,
however these functionalities were not integrated. Popular
robot systems developed for the entertainment industry such
as AIBO and PARO, are also meant for living in close relation
with humans (see e.g. [7]). None of these however have both
speech and localization systems built in.

Although the objective of various studies is to develop
a robot that can aid people in their own homes, very few
experiments are conducted in a real household.

III. IMPLEMENTATION

Since acting in a real household implies many different
abilities for a robot, a modular software design was chosen,
consisting of individual modules running separately. In this
section we describe the overall architecture as well as the
Localization and Dialog modules, before explaining how they
are integrated.

A. Architecture

A three layer architecture [8] was chosen consisting of a
deliberative, an intermediate, and a reactive layer (s. Fig. 1).
The dialog system for complex user interaction is located in
the top deliberative layer and in the bottom layer reactive mod-
ules capable of adapting to sudden changes in the environment
are placed. Since neither the deliberative layer dominates the
reactive layer nor the reactive layer dominates the delibera-
tive one, a module called Execution Supervisor (ESV) was
developed [9] located in the intermediate layer, where the
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Fig. 1. Integration of Localization into the HRI architecture of BIRON.

Localization and its knowledge base are also positioned. The
ESV coordinates the different tasks of the individual modules
by reconfiguring the parameters of each module. For example,
the Player Interface for controlling the hardware is configured
to receive movement commands from different modules.

The ESV can be described as a finite state machine. The
different HRI abilities are represented as states and a message
sent from a module to the ESV can result in a transition
from state A to state B. For each transition the modules in
the different layers are reconfigured. Additionally to the new
configuration, data like movement speed is exchanged between
the modules. All data exchange via the ESV is based on the
XML based Communication Framework (XCF, see [10]) using
four predefined XML structures:

Event: data sent from modules to ESV
Status: data sent from ESV to deliberative modules
Order: data sent from ESV to non deliberative modules
Reject: data is not accepted by ESV since it is too old or

the robot is not in the appropriate state
All data exchange between the ESV and each module are
automatically established after reading a configuration file.
This file also contains the definition of the finite state machine
and the transitions that can be performed. This makes the
system easily extendable for new HRI capabilities, by simply
changing the configuration file for adding new components like
the Localization without changing one line of source code.

A former implementation already contained modules for
multiple person tracking with attention control [11] and an
object attention system [12] based on deictic gestures for
learning new objects and storing them in a scene model.
Here we detail how the human-robot interaction is extended
for teaching the robot location names and retrieving location
names. To achieve this functionality, the dialog is extended
and a vision-based localization module is added to the overall
architecture as depicted in Fig. 1. This enables the robot to



learn names of new locations during the interaction with a
human to generate a human-augmented spatial representation
of the home environment.

B. Map-building and localization

Map building and localization are crucial functionalities
for mobile robots. The most commonly used approach is
the landmark-based SLAM method, which uses a recursive
filter, such as the Extended Kalman Filter to build a metric
map of the environment. In order to make a precise and
consistent map, data from different sensors is integrated,
such as odometry, vision and laser [5]. Another approach of
modeling the environment is to construct an appearance based
map. In such a model the sensor readings taken at different
locations are not merged but kept separate as characterization
of the locations. In the following we will describe how we
build such a map and how we use it for localization. For a
more complete description see [13].

In the exploration phase the robot collects a series of sensor-
readings, which in our case are panoramic images obtained
from an omnidirectional camera which is mounted on the top
of the robot [14], see figure 3 for the mounting and figure 6
for some example images. From every sensor reading a feature
vector is extracted, consisting of a set of scale invariant local
image features (SIFT) per image [15] which is stored in
the Knowledge Base. If the human guide stops the robot
and provides the robot with the name of the location (see
Section IV-B), the next set of features is augmented with that
label.

In an off-line map building phase, all the feature vectors are
compared pairwise. Various distance metrics can be chosen to
calculate an affinity between two images. In this study we
will compare them by finding corresponding SIFT-features
and imposing the epipolar constraint on the corresponding
image-locations, see [16], [13], [17]. The minimum number of
corresponding image points needed for computing the relative
position between two images, given that the robot moves on a
plane, is 4. Thus if 4 or more features are constrained by the
epipolar constraint, we state that the two images match.

The information obtained by matching all the feature vectors
pairwise is then put into a graph. The nodes of the graph
represent the sensor readings and the links between the nodes
indicate if two sensor readings are in some way close to each
other, given the matching criteria that was used. This ‘appear-
ance based’ graph contains, in a natural way, the information
about how the space in an indoor environment is separated by
the walls and other barriers. Images from a convex space, like a
room, will have many connections between them and just a few
connections to some images that are from neighboring space,
such as a corridor. To find the links that connect different
highly connected subgraphs we apply a normalized graph
cut approximation algorithm originating from graph theory
[18]. In this way we obtain clusters of the sensor-readings,
that correspond with the convex spaces that make up the
environment. For the used clustering algorithm the number of
clusters must be known or selected using some graph theoretic

criteria [19]. We will assume that every convex space is labeled
exactly once, so we set the number of clusters to the number
of labels that were given.

Now we can use the labels given by the tour guide during
the exploration to label these clusters. In the ideal case the
labeled sensor-readings all belong to a separate cluster. Every
cluster then gets labeled according to the name of its single
labeled sensor-reading. However, due to the mismatch in
human conceived spaces and the spaces that result from the
automatic clustering, it may occur that some clusters bear no
labeled node, while others may have multiple labeled nodes.
We currently resolve this in the following manner. Clusters
with multiple labels are again clustered into two group. This
is repeated as long as there are clusters with multiple labels.
Clusters with no labeled node, will not be labeled at all. In the
future we hope to develop methods to solve these ambiguities
by interaction with the human guide.

The robot can use the clustered appearance based graph,
augmented with human given labels, to localize itself in the
environment. Because the sensor readings are retained in this
representation localization is straight-forward: the robot takes
a new sensor reading and matches it with the sensor readings in
the representation. The label that is associated with the cluster
to which the sensor readings belong corresponds to the current
location. If the matching nodes come from different clusters,
for example if the robot is on the border of two or more
rooms, we find the node with the largest amount of matching
neighbors, according to the graph, and use the label associated
with the cluster of that node. If the current image did not
match any in the graph or the found cluster has no label then
the robot can not localize itself.

C. Dialog

To provide labels for and retrieve position data from the
Localization a spoken dialog system is used. In general a
dialog system is responsible for carrying out interactions with
the user including transferring user commands to the robot
control system and reporting task execution results to the user.
During the conversation a dialog system should be able to
regulate the initiative distribution, handle miscommunication,
draw inferences between interlocutors’ contributions and or-
ganize and maintain the discourse. To enable these abilities
we implemented a powerful grounding-based dialog model for
BIRON.

Clark [20] proposed the notion of grounding: during a
conversation the interlocutors need to coordinate their mental
states based on their mutual understanding about the cur-
rent intentions, goals and tasks. He termed this process as
‘grounding’. Furthermore, a speaker can only be sure that her
account (presentation) was fully understood if her interlocutor
provides some evidence of understanding (acceptance), i.e., if
the ‘common ground’ is available. Only then will the speaker
be willing to proceed to another account. Our dialog system is
based on this idea. We represent interlocutors’ contributions
as exchanges, i.e., pairs of contributions. They achieve the
state ‘grounded’ only if the acceptance of the presentation is



available which depends on the communication success (e.g.,
if the speech input is clearly understood) and the robot task
execution status. These exchanges are organized in a stack
which represents the ungrounded discourse up to the current
state. The grounding status of the whole stack is dependent
on the status of the individual exchanges and the relations
between them. We introduced 4 types of such relations (de-
fault, support, correct and delete) and they can also have
local effects on their previous exchanges. According to the
execution results of the robot control system the dialog system
formulates contributions for the robot. Each contribution of
both the user and the robot is categorized in terms of its
roles, i.e., if it initiates an exchange of a certain relation to the
previous exchange or if it is the acceptance of an existing one.
According to this role, either a new exchange is pushed onto
the stack or an old one (or a group of old ones) is popped
because it reaches the status ‘grounded’. All the popped ex-
changes are collected into a vector which records the complete
dialog history. We thus model the grounding process using
an augmented push-down automaton which exhibits local
flexibility in contrast to conventional approaches ([21], [22]).
The implemented system enables a mixed-initiative dialog
style and a well-organized discourse maintaining mechanism.
It can also handle complex conversational repair behavior and
facilitate a smooth conversation.

D. Integration

To start a conversation and processing a command by the
Dialog the user needs to be tracked by the system and speech
processing has to be activated based on a person looking at
the robot while speaking. This avoids the robot reacting to
sound sources like a radio or a TV. Speech understanding will
interprete the request, sending a semantic representation of the
user utterance to the Dialog. If the utterance is identified as
being Localization related, e.g. because it contains the name of
a location and a deictic reference, it will be forwarded to the
Localization by the ESV. This way the Localization is activated
to learn new location names. When the Dialog processes a
query for a room the Localization will provide the name of
the location if known. The result will be handed to the Dialog
which generates a verbal response. In future, the Localization
could inform the Dialog in a proactive interaction via the ESV
that a recent location is unknown, causing the Dialog to ask
the user for the name of the location. In order to allow these
different types of interactions, both modules send and receive
information to and from the Execution Supervisor using the
data structures as described above.

In the following we explain how the dialog system works
with the example of a localization-related task (as shown in
Fig. 2). The user starts by naming the location (U1) but is
not understood possibly due to speech recognition problems.
This presentation creates a new exchange Ex 1. Without the
need to consult the rest of the robot system, the dialog system
immediately starts a clarification question (R1), i.e., it creates
a new exchange Ex 2 with the grounding relation ‘support’ to
Ex 1. When the user answers the robot’s question (U2) Ex 2

U1: This is the kitchen.
R1: I beg your pardon?
U2: This is the kitchen.
R2: Oh, you really have a nice kitchen!

after clustering: 

U3: Where are you?

Ex 1 Ex 2

Ex 3
R3: I’m in your wonderful kitchen.

Fig. 2. Dialog example for localization (U: User, R: Robot)

is popped from the stack as it is now grounded. Since Ex 2
has a support relation to the previous not-understood exchange
Ex 1, Ex 1 is updated with the newly collected information
that the user names the location with ‘kitchen’.

The dialog system then tries to provide acceptance for
Ex 1 by sending the command SetLocName with the pa-
rameter ‘kitchen’ to the Localization. Once the dialog sys-
tem receives a positive result about the successful operation
SetLocName:kitchen the status of Ex 1 is changed
to grounded and Ex 1 is popped from the stack with an
acceptance being issued to the user (R2). The stack, i.e., the
currently ungrounded discourse, is now empty.

After the offline-clustering process of the Localization, the
robot is able to answer questions like “Where are you?” (U3)
which creates a new exchange Ex 3. To provide the acceptance
for this exchange, the dialog system sends the command
GetLocName to the Localization which then successfully
delivers the name of the location ‘kitchen’. Thus, the dialog
system can ground the current Ex 3 and pop it from the stack
while informing the user about the current location (R3).

IV. EXPERIMENT - BIRON @ HOME

After integrating and testing the new components suc-
cessfully at the laboratory, the overall system including Lo-
calization and Dialog were used in a real, less structured
home environment. To perform the home tour scenario as
described in Section I the mobile robot BIRON was used as
a demonstrator.

A. Hardware

Fig. 3. Camera setup.

BIRON is based on the Pioneer
PeopleBot from ActiveMedia. The plat-
form is equipped with several sensors
to obtain information of the environment
and the surrounding humans. A pan-tilt
color camera is mounted on top of the
robot for acquiring images of objects and
the upper body part of humans interact-
ing with the robot. Behind the pan-tilt
unit the omnidirectional camera for lo-
calization is positioned (see Fig. 3). Two
farfield microphones are located at the
front of the upper platform, right below



a touch screen display, to localize sound
sources. Below the microphones, an iSight firewire camera
for detecting deictic gestures can be found. A SICK laser
range finder is mounted at the front on the base platform. All
software components are running on a network of distributed
computers. The onboard PC in the robot’s base is used for
controlling the drive and the on-board sensors as well as for
sound localization. An additional PC inside the robot’s upper
extension is used for person tracking and person attention.

The two on-board PCs are linked by Fast-Ethernet to a
router with wireless LAN. Three additional laptops are linked
to the on-board PCs via the router. One laptop is used for
gesture, object, and face recognition. The second one is
used for localization and the third laptop performs speech
processing and is linked via wireless connection.

B. Performing the Home Tour

Equipped with this hardware, BIRON was taken to a real
and fully furnished home environment, much more unstruc-
tured than common laboratory surroundings, including plants,
pictures, wooden desks and cupboards. The robot was guided
from the hallway to the office, returning to the hall way a
second time to proceed to the living room (see Fig. 4). Since
the clustering for learning new locations (see Section III-B)
had to be done separately, the home tour was divided into two
subtasks: first, mapping new locations and second asking the
robot about its position after the offline clustering.

Beginning with the mapping, the home tour started at the
office, where the user asked the robot about its position. Since
the location was not introduced to the robot the Localization
returned unknown triggering the Dialog to generate the speech
output:“Well, I don’t know where I am.” The user subsequently
told the robot the name of its recent position which causes

2 m 4 m

4 m

5,5 m

"This is the living room"

"This is the hallway"

"This is the office"

Fig. 4. Floor plan of the flat the home tour was performed at, containing
the robot positions and results of the Localization.

Fig. 5. Interacting with BIRON at a real home environment.

the Dialog to send the label of this room to the Localization
and to generate a confirmation answer. The user, continuously
tracked by the person tracking and attention system [11]
proceeded the tour alternately asking the robot to follow her
and telling it the names of new rooms using the Dialog
(see Fig. 5). During the whole tour the Localization was
periodically taking pictures of the surrounding every 2 seconds
using the omnidirectional camera. After stopping the tour at
the living room and clustering the data, a second tour starting
at the living room was performed, now the user asked the
robot about its position at different rooms. For both, naming
the rooms and asking for locations, a position close to the
middle of that space was chosen for a better view of the
omnidirectional camera, but no fixed positions were used.
Videos of the different interactions in the home environment
are available at [23].

C. Results

The robot successfully completed the home tour, while
acquiring a map of the environment. The interaction with the
robot, naming the places and asking the robot its location,
went smoothly due to the Dialog system. We will now give
some more detailed results for the mapping and localization
system.

During the home tour 253 omnidirectional images were
shot. In figure 4 the approximate positions from where the
images were taken are sketched. The images of the two rooms
are feature rich, while the hallway is quite plain, as can be seen
in some panoramic images in figure 6. In some images the
view is blocked by persons walking through the environment
in addition to the tour guide standing in front of the robot.
As described in the Section III-B, the images were matched
pairwise to construct a graph. Because we do not make use
of odometry it is hard to visualize this graph. In the upper
part of figure 7 the graph is visualized by a ‘connectivity
matrix’, which depicts for every pair of images if they do or
do not match. The big black squares that are visible indicate



Fig. 6. Panoramic images as taken by the omnidirectional camera of the
hallway, the office and the living room (from top to bottom).

large subsets of the images, which all match with each other,
because they look alike. The biggest square corresponds to
the matching images taken from the office and the square at
the lower right to the living room. The first thirty images
were taken from the hallway as well as the images 155 to
170, when the robot reentered it after leaving the office (see
also figure 4). This can be seen in the connectivity matrix,
where the images match. Some of the images falsely matched,
because of persons blocking the view, or sensor noise, as is
visible in the connectivity matrix by the white areas with the
sparse dots.

Despite the false matches, the graph was successfully clus-
tered into three separate subgraphs which corresponded to
the three spaces. Because every space was given a label,
each cluster contained exactly one node that was labeled and
could thus be labeled accordingly. The lower part of figure 7
shows to which labels the images were clustered. This is also
visualized in Fig. 4, where the image positions of different
clusters have a different color. The algorithm was sometimes
indecisive at the borders between two spaces, e.g., when the
robot was entering the office, some images in the hallway near
the doorpost were clustered in the office and vise versa. This
however is reasonable given the fact that a large portion of the
room is already visible when standing near to it.

To test the localization method it had to localize 300 images
taken from a test run given the labeled appearance based map.
The test images were annotated by hand, which was fairly easy
because the spaces were clearly separated by the doorposts. An
example of a test image that matches with a training image is
given in Fig. 8. Of all test images 10 were misclassified, from
which 3 were close to a border, and 1 image was not localized
at all. All the misclassified images were shot from the hallway,
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Fig. 7. The connectivity graph and the clustering results shown for the
images taken during the home tour.

so the errors are probably due to the lack of features.

V. CONCLUSION

In this paper we presented the results of integrating Lo-
calization and Dialog on a mobile robot platform enabling
the robot to interact with a human via speech in an unknown
home environment. We described an approach for estimating
the recent position using only images of an omnidirectional
camera. A spoken dialog system for human oriented commu-
nication is used for setting labels to newly learned locations
and generating a verbal output according to the position data
delivered by the Localization. The integrated system was tested
in a real home environment successfully performing both
learning new locations and identifying them after an clustering
phase.

By creating a robot that can operate in real home envi-
ronment, we have a testbed that serves as a basis for more
complex experiments and user studies referring to different
scientific issues. Taking advantage of the integrated system, it
is now possible to use the different kinds of knowledge within
the system to improve the interaction quality. For example, as
a next step we will enable the robot to take the initiative, by
asking for the names of unknown places or stating which room
it enters by itself. This proactive behavior increases its human-
robot interaction capabilities and thus the social acceptance.



Fig. 8. Matching a test image with a training image. The lines indicate
matching image features.
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