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Abstract

A supervised learning rule for Spiking Neural Networks (SNNs) is presented that
can cope with neurons that spike multiple times. The rule is developed by extending
the existing SpikeProp algorithm which could only be used for one spike per neuron.
The problem caused by the discontinuity in the spike process is counteracted with
a simple but effective rule, which makes the learning process more efficient. Our
learning rule is successfully tested on a classification task of Poisson spike trains.
We also applied the algorithm on a temporal version of the XOR problem and show
that it is possible to learn this classical problem using only one spiking neuron
making use of a hairtrigger situation.
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1 Introduction

In the last ten years the aim of neural network research has shifted to models
that are more biologically plausible, such as Spiking Neural Networks (SNN)
[1,8,3]. These SNNs model the precise time of the spikes fired by a neuron, as
opposed to conventional neural networks, which model only the average firing
rate of the neurons [9]. Due to this temporal coding, SNNs are believed to
be especially useful for the processing of temporal patterns, such as speech
recognition [1,8,10]. These temporal patterns consist of correlating temporal
events, such as a series of phonemes in the case of speech. The fact that
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these temporal events can happen more than once, makes temporal patterns
actually different from static patterns. So in order to process such patterns
with an SNN, they have to be encoded in multiple spikes per input neuron and
the neurons have to be able to spike more than once. Although there have been
various studies introducing learning rules for networks of spiking neurons that
spike only once [1,13], no practical supervised algorithm has been developed
that can cope with neurons that fire multiple spikes.

In [6] a learning method is designed for one spike per neuron, which is shown
to be extendable to cope with input neurons spiking multiple times. However,
using this extension, the classification is more influenced by the first spikes
than by later spikes, making the method less practical. A principle often used
to classify multiple spikes per input neuron, is by first clustering these multiple
spikes to single spikes using an SNN in combination with an unsupervised
learning rule and then feeding these single spikes to a second SNN which
uses a supervised learning rule [11,12]. This classification method is far from
optimal because the clustering method does not distinguish between salient
and invariant information in the data for a particular classification task.

It would be beneficial to have a completely supervised learning algorithm
that is designed to cope with multiple spikes per neuron and could learn to
classify temporal data like the conventional backpropagation algorithm can
learn static data. In this study we developed such a learning rule based on
the SpikeProp algorithm, which is successful for the classification of patterns
coded in single spikes [1]. We extend this rule to make it applicable to neurons
that spike multiple times.

This paper is organized as follows. In Section 2 we describe the neural model
we use. Then, in Section 3, we derive our learning rule and discuss the problems
caused by the discontinuity of the spiking process. We test our algorithm in
Section 4 and finally draw some conclusions in Section 5.

2 Spiking neuron model

We model the behavior of the spiking neurons according to the Spike Response
Model [8]. In this model the output of a neuron j is completely described by
the set of precise firing times of the spikes it produced, the so called spike
train:

Fj = {tfj ; 1 ≤ f ≤ n}, (1)

where n denotes the number of spikes and the spike train is chronologically
ordered: 1 ≤ f < g ≤ n → tfj < tgj . The neuron fires a spike when its internal
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state, the membrane potential uj, reaches a threshold ϑ from below:

uj(t
f ) = ϑ ∧

duj(t)

dt
|t=tf > 0. (2)

We have set the threshold ϑ to 1.0.

This potential is influenced not only by the spikes of its presynaptic neurons
Γj (see figure 1), but also by the spikes it produced itself:

uj(t) =
∑

t
f
j
∈Fj

η(t − tfj ) +
∑

i∈Γj

∑

t
f
i
∈Fi

∑

k

wk
jiε(t − tfi − dk

ji), (3)

where variable wk
ji denotes the weight of synapse k from neuron i to neuron

j and dk
ji denotes the axonal delay. The spike response function ε describes

the contribution of one synaptic terminal on the potential of the postsynaptic
neuron caused by a presynaptic spike. In our simulations this so called postsy-
naptic potential (PSP) is modeled by the difference between two exponential
decays:

ε(s) =
[
exp

(
−

s

τm

)
− exp

(
−

s

τs

)]
H(s), (4)

where H(s) denotes the Heavyside step function: H(s) = 0 for s ≤ 0 and
H(s) = 1 for s > 0. The time constants τm and τs which determine the rise
and decay of the function are set to 10 ms and 5 ms respectively.

After a neuron emitted a spike, the potential decreases instantly to the resting
potential, which is defined as zero, and it is more difficult for the neuron to
generate a second spike shortly afterwards, the so called refractoriness. This
is modeled by the η function, for which we use simple exponential decay:

η(s) = −ϑ exp
(
−

s

τr

)
H(s), (5)

where the time constant τr is set to 10 ms and ϑ is again the membrane
threshold. In the learning process the derivative of both functions will be used.
For the special case of s = 0, for which these derivatives are undetermined,
we will define them to be zero. Both these functions can be replaced by other
functions without invalidating the learning rule, as long as the derivatives
exist.
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3 Extending SpikeProp to multiple spikes

In the following we will derive the learning rule for multiple spiking neurons
by extending the existing SpikeProp algorithm [1]. The SpikeProp algorithm
was specifically designed for networks of spiking neurons where each neuron
emitted at most one spike each. The tasks on which it could be applied were
thus no different than that of conventional neural networks. In this section we
extend the algorithm so it can cope with spiking neurons that emit more than
one spike and can thus learn to classify sets of spike trains.

The SpikeProp rule is based on the error-backpropagation rule for conventional
neural networks which in turn is based on the gradient descent method [9].
This method requires the derivative of the network error with respect to the
free parameters to exist. For SNNs this is not always the case due to the
discontinuity in the threshold function (equation (1)). A small change of a
parameter does not only cause a shift of the spike times, but can also cause a
neuron to emit less or more spikes. If such a generation or removal of spikes
occurs, the network error makes a jump. We do not take this effect into account
during the derivation of the algorithm, but assume that the number of spikes
stays the same. In some cases this approximation causes problems, for which
we propose some extra rules in subsection 3.2.

3.1 Gradient descent

We now derive a gradient descent learning rule in a similar way as SpikeProp
[1]. However we take into account that the neurons can fire multiple spikes. In
SpikeProp every neuron backpropagates a single error value, namely the error
with respect to its one spike. In our derivation the neuron needs to determine
and backpropagate an error value for each spike it fired.

The network architecture on which the SpikeProp algorithm and our extension
of it can be applied is in principle not constrained to feedforward connections
only, as was the case with the conventional backpropagation algorithm [9]. So
the network could be recurrent as long as there are no connections leading to
input neurons or coming from output neurons, see figure 1. Although we must
note that we have only tested the algorithm on feedforward networks.

We define the network error to be the sum squared error of the first spike of
the output neurons O, so later spikes of these neurons are ignored:

E =
1

2

∑

o∈O

(t1o − t̂1o)
2, (6)
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Figure 1. A network architecture with recurrent connections on which the learning
rule can be applied.

where t̂1o denotes the desired spike time. Other error functions, including func-
tions over more than only the first output spike, are also possible, as long
as the derivative of the error to one spike exists. In our case the error with
respect to one output spike is determined by

∂E

∂t1o
= t1o − t̂1o. (7)

The parameters that are tuned to reduce this error are the weights of the
synapses wk

ji. Other parameters, like the axonal delays, could also be learned
[14]. Like SpikeProp we calculate the derivative of the network error with
respect to the weight in order to calculate the appropriate weight change [1]:

∆wk
ih = −κ

∂E

∂wk
ih

, (8)

where κ denotes the learning rate. Because neuron i can fire multiple times
and all these firing times depend on the weight, this equation can be expanded
with regard to these spikes:

∆wk
ih = −κ

∑

t
f
i
∈Fi

∂E

∂tfi

∂tfi
∂wk

ih

. (9)

First the second factor on the right hand side, the derivative of a firing time
with respect to the weight, is calculated using the results of the study by Bohte
et al. for the SpikeProp algorithm; see [1] or [2] for a complete derivation.

∂tfi
∂wk

ih

=
∂ui(t

f
i )

∂wk
ih

−1
∂ui(t

f
i
)

∂t
f
i

. (10)
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Both the derivatives on the right hand side can be derived using equation (3).
When calculating the partial derivative of the potential during a spike tf

i with
respect to the weight, we must keep in mind that earlier spikes tg

i < tfi also
depend on the same weight and influence the potential. Hence, the function
becomes recursive:

∂ui(t
f
i )

∂wk
ih

= −
∑

t
g
i
∈Fi

η′(tfi − tgi )
∂tgi
∂wk

ih

+
∑

tl
h
∈Fh

ε(tfi − tlh − dk
ih). (11)

We will not explicitly require tg
i < tfi , while this condition is already met due

to the fact that ε′(s) = η′(s) = 0 for s ≤ 0.

The second derivative of equation (10) evaluates to:

∂ui(t
f
i )

∂tfi
=

∑

t
g
i
∈Fi

η′(tfi − tgi ) +
∑

h∈Γi

∑

tl
h
∈Fh

∑

k

wk
ihε

′(tfi − tlh − dk
ih). (12)

We now calculate the first factor on the right hand side of equation (9), the
derivative of the network error with respect to a spike. This is derived for
every spike of non-output neuron i /∈ O, which depends on all spikes by all its
neural successors Γi (see figure 1):

∂E

∂tfi
=

∑

j∈Γi

∑

t
g
j
∈Fj

∂E

∂tgj

∂tgj

∂tfi
. (13)

Thus, in order to calculate the derivative of the error with respect to a spike,
we already have to know the derivative of the error with respect to spikes of its
neuronal successors that happened later in time. In practice this means that
the error with respect to the last spike of the network has to be computed
first, then to the spike preceding the last, and so on. This is the temporal
equivalent of the conventional backpropagation technique, where the error
was propagated back spatially through the network [9].

The derivative of a postsynaptic spike with respect to a presynaptic spike can
be further expanded as in equation (10):

∂tgj

∂tfi
=

∂ui(t
g
j )

∂tfi

−1
∂uj(t

g
j
)

∂t
g
j

. (14)

The second factor already appeared in equation (10) and is calculated in equa-
tion (12). The first factor, the derivative of the potential during a postsynaptic
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spike with respect to a presynaptic spike, can again be derived from equa-
tion (3):

∂uj(t
g
j)

∂tfi
= −

∑

tl
j
∈Fj

η′(tgj − tlj)
∂tlj

∂tfi
−

∑

k

wk
jiε

′(tgj − tfi − dk
ji). (15)

As can be seen this is again a recursive function, so the order in which the
computations are done is important.

With this set of formulas it is now possible to compute the necessary weight
changes that minimize a certain error measure of the spikes of the output
neurons given a pattern of input spike trains.

3.2 Handling of discontinuity

We now address the problems the discontinuity of the spike process cause
for the derived gradient descent rule. There are two circumstances that need
special attention.

A troublesome situation, which is overlooked in all other studies regarding
SpikeProp [1,15,14,10], occurs when a spike is produced by a potential that
barely reaches the threshold. In this case the gradient of the potential during
the spike is very small which in turn causes the derivative of the error to be
very high resulting in a very large weight change, see equation (10) and (14).
These large weight changes will almost always lead to a large increase in the
network error, after which learning has to start over again. We used a simple
but effective solution to overcome this chaotic behavior by putting a lower
bound on the slope of the potential when computing the error. If the gradient
of the potential during the spike turned out to be smaller than 0.1, we used a
value of 0.1 instead, which prevented large weight changes.

Secondly, if a weight of a connection is so small that the postsynaptic neuron
will not spike, then the error with respect to that weight will be zero, see
equation (9). In this case the weight will never increase and the neuron will
never be able to spike. A way to circumvent this, is to introduce an extra rule
that increases the weight with a small amount if the postsynaptic neuron did
not fire. An equivalent method, used in [14] and [10] is to lower the threshold
of the postsynaptic neuron. Another approach is to start learning with such
high weights that the neurons will initially fire for every input pattern. Using
a small enough learning rate the weights will generally be lowered to values
that minimize the network error but which do not cause an output neuron to
stop firing. In our experiments we used the second approach, while it proved
to be sufficient to avoid non-spiking output neurons.
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Figure 2. The layered feedforward architecture used in our experiments. Every con-
nection consists of multiple synapses with different delays.

4 Experiments

In this section we illustrate the capabilities of the proposed learning rule to
learn artificially generated tasks. First the effect of adding the extra rule, as
described in subsection 3.2, is shown by applying the algorithm on a temporal
version of the eXclusive-OR (XOR) benchmark. Then we show the capability
of the algorithm to classify multiple spikes by applying it to Poisson spike
trains.

The network architecture we use is a simple layered feedforward network with
multiple delays per connection, as described in [5] and used to test the Spike-
Prop algorithm [1], see figure 2. Due to the lack of recurrent connections,
such a network is easy to comprehend, but also has the disadvantage that the
timescale on which it can recognize spikes is determined by the delay interval
and the time constants of the connections, which are generally small. We use
the same delay configuration as in [1] and [12]: every connection consists of 16
synapses with a delay of {1, 2, . . . , 16} ms.

4.1 The XOR benchmark

The original SpikeProp algorithm was tested on the classical XOR problem
[1]. We attempt to replicate that experiment with and without the rule that
prevents large weight changes. Before the network is applied to the function,
it is encoded into spike time coding as shown in table 1.

This encoding is fed to a network with 3 input neurons, one hidden layer with
5 neurons, which are only allowed to spike once, and 1 output neuron, see
figure 2. Before learning, the weights leading to the hidden neurons are set to
random values between −0.5 and 1.0, while the weights leading to the output
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Input 1 Input 2 Bias Output

0 0 0 → 16

0 6 0 → 10

6 0 0 → 10

6 6 0 → 16

Table 1
A spike time encoding of the temporal XOR problem [1]. The numbers represent
the precise time of the spikes in milliseconds.

neurons are set in such a way that connections from 4 hidden neurons only
have positive weights, making them purely excitatory, and from the remaining
neuron only negative weights, making it inhibitory. The weight initialization
is thus bounded for these excitatory and inhibitory neurons to a range of
respectively [0, 1] and [−0.5, 0]. Like in [1], we noticed that the network could
not converge if the positive and negative weights were mixed. The learning rate
κ is set to 10−2 and learning is applied after each pattern, the so called on-line
learning method. Learning is halted when the sum squared error (SSE) drops
below 1.0. For the simulations we used an iterative approach with a simulation
step of 0.01 ms.

Without the rule to prevent chaotic weight changes 4 out of 100 trials did
not converge to a correct weight configuration within a 1000 training cycles.
In the successful trials the learning algorithm needed on average 196 training
cycles to learn the problem. When applying the rule, bounding the slope of the
potential, the algorithm always converged and needed 164 cycles on average,
which suggests that the simple rule is sufficient to counteract the problems of
the discontinuity.

While doing further experiments with the temporally encoded XOR function,
we discovered something quite surprising. It turns out that a network without
the hidden layer can also learn to solve the XOR problem. This was only
possible using the extra rule and a very small learning rate of 10−4. For this
special task we switch to batch learning, as opposed to on-line learning, to
ensure that the resulting solution was valid for all 4 patterns. The algorithm
had trouble to converge and needed more than 106 cycles. With smaller time
constants for the PSP, τm = 4 ms and τs = 2 ms, the learning is more stable
and faster, but still needs more than 105 cycles. In [2] we investigate these
results further and describe a one-layered SNN with only 7 synapses that can
solve the temporal XOR. The important fact to conclude from this result is
that a single spiking neuron can represent the XOR-function, as encoded in
table 1; something that is impossible with a conventional neuron because of
the non-linearity of XOR. It must be noted that the solutions found always
use a so called hair-trigger situation: for some input patterns the potential
just reaches the threshold, while for other patterns it stays slightly under
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Figure 3. Two patterns consisting of two Poisson spike trains derived from the same
template pattern by shifting the individual spikes.

it [7]. These situations should be avoided because the network will not be
robust against noise and as experienced the learning algorithm has difficulty
to converge to the right weight settings.

4.2 The Poisson Benchmark

In this experiment the algorithm will be tested on its capability to classify
two sets of spike train patterns produced by Poisson processes [4]. For both
the classes a template pattern is created consisting of two Poisson spike trains
with a duration of 30 ms and on average 1 spike per 10 ms. From both these
templates 10 noisy patterns are created by randomly shifting each spike by an
amount drawn from a normal distribution with an SD of 2 ms, see figure 3.
The resulting set of 20 patterns is then split in half to produce a training and
a testing set. The output is again coded in the time-to-first-spike: for one class
the output-neuron is designated to fire an early spike at 31 ms and for the
other a later spike at 36 ms.

The same network architecture as used for the XOR benchmark is applied to
this classification task (see figure 2). Also, the same parameter settings are
used with the exception of the stopping criterion, which is set to an SSE of
20.

The algorithm learned the training set in on average 17 cycles and was then
fed with the testing set. In the testing procedure the output was evaluated as
follows: an output spike before 33.5 ms was seen as an early spike, while all
other spikes were seen as a late spike. The network achieved an accuracy of
89 %, which shows that the algorithm is indeed capable of learning multiple
spikes and can generalize well over temporal noise.

5 Conclusion and future work

We have developed a supervised learning rule for SNNs which is equivalent to
the famous error-backpropagation rule for conventional neural networks and
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proposed a simple but effective rule to counteract the problems of disconti-
nuity. The algorithm does not restrict the spiking neurons to fire only once
like other supervised rules, but can deal with multiple spikes per neuron. The
capabilities of this new algorithm are shown by successfully learning Poisson
spike trains. In [2] it was also successfully applied to a lipreading task, classi-
fying small pieces of video. This demonstrates that the algorithm can be used
for real-world applications requiring the processing of temporal data.

In our study we solely used feedforward networks, which can not be used to
process temporal data with large time scales. The learning rule is in principle
also applicable to more general architectures including recurrent connections,
which do not have this restriction. Further research should be conducted to
investigate this possibility.

In [7] it is shown that spiking neurons are more powerful than conventional
neurons. The unexpected success of the one-layered SNN on the temporal
version of the XOR benchmark emphasizes this. New research even indicates
that one spiking neuron with sufficient delayed axons can represent all possible
mappings of a finite set of spike trains. Nevertheless, most of the solutions will
use hairtrigger situations, like that for the XOR benchmark, and are thus not
very suitable for networks of noisy neurons, and in addition can not be used
for real-world applications which are inherently noisy.
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